Unraveling ancient segmental duplication events in human genome by phylogenetic analysis of multigene families residing on HOX-cluster paralogons.
نویسنده
چکیده
BACKGROUND Vertebrate genomes contain extensive intra-genomic conserved synteny, which is the presence of similar set of genes on two or more chromosomes (paralogons). The existence of these paralogons has led to the proposal that vertebrate genome was structured by one or more rounds of ancient whole genome duplications (2R hypothesis). RESULTS The 2R hypothesis was tested by phylogenetic analysis of gene families residing on human HOX-bearing chromosomes (HOX-cluster paralogons). These results revealed that, based on their duplication history, 23 gene families with representation on three or four of the human HOX-bearing chromosomes can be partitioned into four discrete co-duplicated groups. The distinct genes within each co-duplicated group share the same evolutionary history and are duplicated in concert with each other, while the constituent genes of two different co-duplicated groups do not share their evolutionary history and are not duplicated simultaneously. These co-duplicated groups are large constituting members from 3 to 8 gene families and suggest that human HOX-cluster paralogons were shaped by ancient segmental duplications (SDs) and rearrangement events that occurred at least as early as before the divergence of bony fishes and tetrapods. CONCLUSIONS Based on the recovery of ancient SD events in this analysis and given the widespread evidence in favor of the fact that recent SD events played a pivotal role in changing genome architecture of primates and other recently diverged animals, it is concluded that a more realistic model of ancient vertebrate genome evolutionary history can be deduced by tracing the evolutionary trajectory of the genomes of recently diverged vertebrate species.
منابع مشابه
Ancient genome duplications did not structure the human Hox-bearing chromosomes.
The fact that there are four homeobox (Hox) clusters in most vertebrates but only one in invertebrates is often cited as evidence for the hypothesis that two rounds of genome duplication by polyploidization occurred early in vertebrate history. In addition, it has been observed in humans and other mammals that numerous gene families include paralogs on two or more of the four Hox-bearing chromo...
متن کاملConserved synteny between the Ciona genome and human paralogons identifies large duplication events in the molecular evolution of the insulin-relaxin gene family.
The aims of the study were to outline the sequence of events that gave rise to the vertebrate insulin-relaxin gene family and the chromosomal regions in which they reside. We analyzed the gene content surrounding the human insulin/relaxin genes with respect to what family they belonged to and if the duplication history of investigated families parallels the evolution of the insulin-relaxin fami...
متن کاملPhylogenomic analysis reveals ancient segmental duplications in the human genome.
Evolution of organismal complexity and origin of novelties during vertebrate history has been widely explored in context of both regulation of gene expression and gene duplication events. Ohno (1970) for the first time put forward the idea of two rounds whole genome duplication events as the most plausible explanation for evolutionarizing the vertebrate lineage (2R hypothesis). To test the vali...
متن کاملFugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes.
With about 24,000 extant species, teleosts are the largest group of vertebrates. They constitute more than 99% of the ray-finned fishes (Actinopterygii) that diverged from the lobe-finned fish lineage (Sarcopterygii) about 450 MYA. Although the role of genome duplication in the evolution of vertebrates is now established, its role in structuring the teleost genomes has been controversial. At le...
متن کاملThe G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints.
The superfamily of G-protein-coupled receptors (GPCRs) is very diverse in structure and function and its members are among the most pursued targets for drug development. We identified more than 800 human GPCR sequences and simultaneously analyzed 342 unique functional nonolfactory human GPCR sequences with phylogenetic analyses. Our results show, with high bootstrap support, five main families,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular phylogenetics and evolution
دوره 57 2 شماره
صفحات -
تاریخ انتشار 2010